
7AD-A 25 627 INTERACTIE COMPUTER PROGRAM DEVELOPMENT SYSTEM STUDY B

5 OR WRRA H ONE A N3D AA4OVOUME 2 SSEM/SUB..A GENERAL DYNAMICS FORT WORHTXFORT WORTH DIV H C CON N ET AL - JAN 83 DMA-2-O14-VOL-2
UNLS IFIED RADC-TR1-83-_3-VOL-2 F 30602-8 1-C-0039 F/ G 9/2 NL

smmhhhmsmhhIlllllINllllIIIIIIIIIIIIII

1 2 .
L3 22

iff(1111 112.0

1I.L2 .i II 11111=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUR[AU Ofi 'TANDAIADS 1961 A

t

-y~ 3;
$

*74

?
'~2'I

N ~tP
Jr

- -'~.t~.~%~T;vfqty ~32j3'~ 44<
Nj Y:Tht&~ ''~ ~ P ~rA 3tp''' JR ,323. Tsr

:stI 34~
333*3~

-t 4'4~4 C~4.

~ - ~

.~. .. ~

; >rr ~3' ~
4

VI. ~.

- t 'V'
33 3

.7..- 3,33 3 '333
33

t3.yie-3- -~ - - ~" - -

*
1 ~

-M -~ ~". 3.' H 7
3- 33 3

3. 3

*4 *~k*tL ~SI~t, S. wfl M. ~ -

tt SMh tt t~wWssgs 3 3-'

1~ 3

33

1St 112 SWUW.!US!1

3~

A

4 3 33 I.
3! 3 - -3 ~

* 3, 4.
.3' 23- 1

3]
rid

3 - 3 . 3 33
'3a - 3-

'43- - -. - -- 3 -* 4 3.-

:74
-. $ #44;4. ~+7

TO f J

SW~~W W"'L 1"00N

AA A -$--F *& -tf 'r

W4'i c4g4llo .2

-. coto 44,io

don Am'

S--0

-k

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wle OtaEnrd)

REPORT DOCUMENTATION PAGE READ LNSTRUCTIONS
RPRBEFORE COMPLETING FORM

I, REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-83-3, Vol II (of three) _

4. TITLE (mud S.btit.) S. TYPE OF REPORT & PERIOD COVERED

INTERACTIVE COMPUTER PROGRAM DEVELOPMENT Final Technical Sepor
SYSTEMSTUDY6 Jan 81 - 30 Sep 32

SYSTEM STUDY
System/Subsystem Specification 6. PERFORMING OIG. REPORT NUMBER

DMA-2-014

7: AUTHOR(s) 9. CONTRACT OR GRANT NUMBER(#)

H.C. Conn, Jr. R.M. Bond
D.J. Rodjak C.G. Anderson F3C602-81-C-0039

M.A. Goode R.C. Robertson
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PIROGRAM ELEMENT. PROJECT. TASK

General Dynamics/DSD/Central
Center A &OU MB

63701B

North Grant Lane 32050326
Pt Worth '£X 76108

I. CONTROLLING OFFICE NAME AND AGGRESS 12. REPORT DA'E

Rome Air Development Center (COEE) January 1983

Griffiss AFB NY 13441
13. NUMBER OF PAGES

60
14- MONITORING AGENCY NAME & ADDRESSII different from Controlling Office) IS. SECURITY CLASS. (of this r.pof)

Same UNCLASSIFIED
1Sa. OECLASFItFICATION/DOWNGRADING

SCHEDULEN/A
1. DISTRIBUTION STATEMENT tot this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the Abstract .nteord in Block 20, It different from Report)

Same

III. SUPPLEMENTARY NOTES

RADC Project Engineer: Roger Panara (COEE)

19. KEY WORDS (Coninue on reverse sie i nec~eosy An- d Identify Sv block ntsewber)

Software Engineering
programming environment
software tools

20. ABSTRACT lContinue on reeroo side It nec e.ry and Identify by block number)

Vol I (of three) describes the development of the design and supporting

documentation for an incremental and evolving integrated modern engineering

software production environment for the Defense Mapping Agency.

Vol II is the System/Subsystem Specification.

Vol III is the Functional Description.

DO I tAN , 1473 E3,TION OF I ,,OV S IS OBSOLEEU-C U7NCLASSIFIED

SECURITY CLASSIFICA
T

ION OF 'NIS PAGE VA-n oete En.ered)

A.L54& IA ,.tL -

SYSTEM/SUBSYSTEM SPECIFICATION
TABLE OF CONTENTS

Section Title Page

1. GENERAL 4
1.1 Purpose of the System/Subsystem

Specification 4
1.2 Project References 5
1.3 Terms and Abbreviations 7
2. SUMMARY OF REQUIREMENTS 8
2.1 System/Subsystem Description 8
2.2 System/Subsystem Functions 11
2.2.1 Accuracy and Validity 12
2.2.2 Timing 12
2.3 Flexibility 12
3. ENVIRONMENT 14
3.1 Equipment Environment 14
3.1.1 VAX Environment 14
3.2 Support Software Environment 20
3.2.1 VAX Software Tools 27
3.2.1.1 DMATRAN(IFTRAN)/FORTRAN 77/COBOL 74 27
3.2.1.2 USE.IT 28
3.2.1.3 SDDL 30
3.2.1.4 IS/1 33
3.2.1.4.1 INed 39
3.2.1.4.2 INword 39
3.2.1.4.3 SCCS 43
3.2.1.5 FAVS/RXVP80 44
3.2.1.6 CAVS 46
3.2.1.7 VUE 48
3.2.2 Genaral Support 49
3.2.2.1 HYPERGRAPHICS 49
3.3 Interfaces 52
3.4 Security and Privacy 52
3.5 Controls 52
4. DESIGN DETAILS 54
5. DISTRIBUTION AND ADDRESSEES 55

I .~

I .,- - -p

SYSTEM/SUBSYSTEM SPECIFICATION
FIGURES

Number lilift EAU%

2.1 Near-Term System Configuration for DMA Modern
Programming Environment 9

3.1 VAX-11/780 System Configuration 14
3.2 Technical Specifications for VAX-11/780 Processor 15
3.3 MPE Project Management Overview 21
3.4 MPE Usage Scenarios Overview 23
3.5 MPE Usage Scenarios 24
3.6 A Life Cycle Model Scenario Employing USE.IT 29
3.7 Hierarchical Data Development and Communication 30
3.8 SDDL Software Design Process 32
3.9 IS/1 Commands and Programs 36
3.10 INword Features 41
3.11 INword Utilities 42
3.12 Steps in Validating a Program with FAVS

or RXVP8O 44
3.13 Software Analysis and Testing Augmented by FAVS

or RXVP80 45
3.14 CArS Use in Developing Systems 47
3.15 HYPERGRAPHICS Command List 50

EFImaw pAGz BL 1O 7T nL

3

- -. L-

SECTION 1. GENERAL

ifjca 1on This
report is the System/Subsystem Specification, contract data
requirements list (CDRL) item A007, produced as part of the
Interactive Computer Program Development System Study for the
Defense Mapping Agency (DMA).

The purpose of this document is to provide a technical
description of the components of the recommended near-term
dMA modern programming environment (MPE).- (See Final Report
for a complete explanati 9jQ the evQjutit of the near--term
MPE recommendation.) ,-This document includes descriptions of
the DMA MPE tool bearing host (TBH) and software life cycle
tool support environment for the near-term MPE configuration.
The tools described are the ones which best satisfied the
requirements and constraints of the DMA environment at the
time this document was produced. The implementation of this
system should have the recommended tools or equivalent tools
which satisfy the criteria and constraints of the DMA MPE.
Only the FORTRAN and COBOL languages are addressed ip this
document.

4

ELL.-.

1.2 Project References.

a. FEDSIM (Federal Computer Performance Evaluation and
Simulation Center) Installation Review - DMAHTC,
November 1980

b. FEDSIM Installation Review - DMAAC, August 1980

c. FEDSIM Optimization and Error Rate Studies, February 1981

d. Statement of Operation Need and System Operational
Concept, CDRL A002 for contract no. F30602-81-C-0039 -
Interactive Computer Program Development System Study,
February 1982

e. Tool Evaluation Plan, CDRL A003 for contract no. F30602-
81-C-0039 - Interactive Computer Program Development
System Study, September 1981

f. Tool Survey, CDRL A004 for contract no. F30602-81-C-
0039, Interactive Computer Program Development System
Study, February, 1982

q. Alternative Analysis, CDRL A005 for contract no. F30602-
81-C-0039, Interactive Computer Program Development
System Study, March, 1982

h. Functional Description, CDRL A006 for contract no.
F30602-81-C-0039, Interactive Computer Program
Development System Study, March, 1982

i. RADC-TR-78-268 Volume II (of three) FAVS Fortran
Automated Verification System Users Manual

j. CR-2-970 CAVS COBOL Automated Verification System
Functional Descripion, November, 1980

k. A Microcomputer Based Classroom Lecture System By Thomas
C. Irby and Darrell Ward, North Texas State University,
Dept. of Computer Science

1. Interactive Systems Corporation:

1) IS/1 Workbench Programmers Manual for VAX/VMS

2) IS/1 Workbench Users Guide for VAX/VMS

3) IS/1 Text Processing Manual

5

I

.

4) Interactive Systems Corporation Software

Product Descriptions

m. Digital Equipment Corporation (DEC):

1) VAX Architecture

2) VAX Hardware Handbook

3) VAX Software Handbook

n. Higher Order Software (HOS), Cambridge, MA. Product
Descriptions:

1) USE.IT

o. Science Applications, Inc (S.A.I.):

1) SDDL

p. General Research Corporation, Santa Barbara, CA. Users
Manuals.

1) IFTRAN

2) RXVP80

6

1.3 Terms and Abbrevatjns.

ANSI AMERICAN NATIONAL STANDARDS INSTITUTE
APL A PROGRAMMING LANGUAGE
ASCII AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE
CDRL CONTRACT DATA REQUIREMENTS LIST
CPU CENTRAL PROCESSING UNIT
CRT CATHODE RAY TUBE
DCL DIGITAL COMMAND LANGUAGE
QDP DISTRIBUTED DATA PROCESSING
DEC DIGITAL EQUIPMENT CORPORATION
DMA DEFENSE MAPPING AGENCY
DMAAC DEFENSE MAPPING AGENCY AEROSPACE CENTER
DMAHQ DEFENSE MAPPING AGENCY HEADQUARTERS
DMAHTC DEFENSE MAPPING AGENCY HYDROGRAPHIC/

'iOPOGRAPHIC CENTER
DNA DIGITAL NETWORK ARCHITECTURES
FAVS FORTRAN AUTOMATED VERIFICATION SYSTEM
FCN FUNCTION
FEDSIM FEDERAL COMPUTER PERFORMANCE AFD EVALUATION

AND SIMULATION CENTER
FTN77 FORTRAN 77
GD/DSD GENERAL DYNAMICS/DATA SYSTEMS DIVISION
HOL HIGH ORDER LANGUAGE
HOS HIGHER ORDER SOFTWARE
IS/1 INTERACTIVE SYSTEMS/ONE
LAN LOCAL AREA NETWORK
MB MEGABYTE
MGT MANAGEMENT
MPE MODERN PROGRAMMING ENVIRONMENT
PDAY PARTIAL DAY
PWB PROGRAMMER'S WORK BENCH
RADC ROME AIR DEVELOPMENT CENTER
RAT RESOURCE ALLOCATION TOOL
RJE REMOTE JOB ENTRY
ROM READ ONLY MEMORY
SCCS SOURCE CODE CONTROL SYSTEM
SDD SOFTWARE DESIGN AND DOCUMENTATION
SDDL SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE
TBH TOOL BEARING HOST
UNIX TRADEMARK OF BELL LABORATORIES (OPERATING SYSTEM)
VMS VIRTUAL MEMORY SYSTEM
WDCS WRITABLE DIAGNOSTIC CONTROL STORE

7

SECTION 2. SUMMARY OF REQUIREMENTS

2iL!_ iL m DescriitiOno The near-term system
design was developed, through the process described in
Section 15 of the Final Report , to meet the immediate needs
of DMA. The near-term MPE is based upon a VAX used as a
front-end software development environment to a production
UNIVAC mainframe as described in Figure 2.1. This con-
figuration provides a software development capability with
minimum schedule and technical risk at low cost. As defined,
the system has a high probability for improving productivity.
The MPE supports all life cycle development phases and the
maintenance and project management functions. In this
document 'maintenance functions' is defined as post produc-
tion software development activity requiring work in one or
more phases of the life cycle: requirements, design,
programming, and testing. These would include activities
such as the correction of software errors discovered in
production programs and modifications or upgrades to programs
already on production status.

8

TOOL Dr ING MOST VAX 11/780

TOOL LIFE CYCLE PHASE SUPPORT[1
U.!T Iequirmnts, Design& Coding
o IN0 Desig

DtIATRAi4N/:FrAJT Coding a

e FORTRAN 77 * Coding Terminals

e COBOL 74 . Coding

* FAVS/RXVP80 9 Testing

a CAVS & Testing

* 19/1 * Maintenance
MPE ADMINI STRATOR

- Inword - Docteentation -Project Management
- lIed - Text editing MPERGRAPHICS - Training
- PU (SCCS) - Configuration Control (on Apple Microsystems

* VUE * Project Managemert

COM0@UNICATIONS
LINK V \

UNIVAC PRODUCTION MAINFRAME

9

Figure 2.1 Near-Term System Configuration for DMA Modern
Programming Environment

t - - m-l
. ' -- . -.. - - l L i - . I m . .

A VAX-11/780 will be utilized to host a FORTRAN and COBOL
software development system to support the requirements,
design, programming, testing and maintenance phases of the
software development life cycle as well as project
management. An overview of the specific support provided by
this proposed system is given in the following paragraphs.

The AXES portion of the USE. IT tool will functionally supportthe specification and analysis of the requirements of

programs. Certain categories of programs will also be
developed within the USE.IT life cycle and supporting
library. The design of the remaining categories of programs
will require the generation of a software design document
through the use of the Software Design and Documentation
Language (SDDL). Definitions of the 5 categories of software
development and their associated MPE usage scenarios are found
in Section 3.2 of this report.

All coding will be accomplished in DMATRAN(or its commercial
version IFTRAN), ANSI X3.9-1978 FORTRAN (77) or ANSI X3.23-
1974 COBOL (74). FORTRAN 77 and COBOL 74 will serve as a
common interface between the VAX software development machine
and the production UNIVAC mainframe to which source code of
completed programs will be sent for final compilation and
production status. Testing and optimization of programs will
be performed on the VAX using the FORTRAN Automated
Verification system (FAVS), or its commercial version RXVP80,
for FORTRAN 77 programs and the COBOL Automated Verification
System (CAVS) for COBOL 74 programs. Additionally on the VAX
will reside a configuration of the Interactive Systems/One
(IS/i) system supporting documentation, text editing, and the
configuration control function of the maintenance phase,

Additional non-hosted support will be required. The MPE ad-
ministrator and toolsmith functions will support the project
management function as well as system management; and
HYPERGRAPHICS, a tool for building presentations, lectures or
interactive lessons will be utilized for training purposes.
The selection of HYPERGRAPHICS is based on its simplicity in
use as well as cost and availability. The generation of
visual material to support a training document is easily per-
formed and maintained.

The VAX and UNIVAC computers will need to be connected
through a communications link described in Sections 2.2 and
3.3. To support users in a timely manner and to provide
adequate access, multiple VAX computers will be required. A
recommendation of three identically configured systems at
each center is explained in Section 16.2 of the Final Report.
Additionally, the VAX's within each center will be connected

10

. S..

through the DECnet Local Area Network (LAN) thus providing
intra-system communications and back-up capabilities for the
development systems.

2L,_IZ_§L2iUkaFu__nctions. The near-tern MPE functions
as a tool to provide life cycle support to the software
development process. In the following paragraphs the in-
dividual functions of each major element will be described as
well as the function of the aggregate.

A VAX-11/780 computer will be utilized to support
requirements specifications, design, coding (data entry and
analysis), documentation, testing, configuration control, and
project management. The computer will support multiple ter-
minals over a range of geographic locations, depending upon
the communication and protocol utilized.

The specification and documentation of the requirements of a
computer program will be partially automated through the use
of USE.IT. This tool will allow the interactive development
of a requirements specification document using a defined
methodology, and analysis of the specification for data flow
and control sequences. When the program specified can be
categorized to fit within certain constraints, other
facilities of the USE.IT tool can be used which will directly
generate a high order language (HOL) program to accomplish
the specified task.

The design of remaining programs will be accomplished
utilizing SDDL. Whether the task is accomplished by an in-
dividual or a team, the tool will provide precise, accurate
and orderly transitions between requirements, design and
coding activities as well as intra-design activities. The
tool provides, through a prescribed methodology, the
capability to describe the design in simple, understandable
constructs; allow for checking of the design constructs; and
translate the design into a readable design document.

Data entry will be performed interactively when generating
new code or documentation. This activity will be supported
by the state-of-the-art word processing and text editing
capabilities of the IS/1 Programmer's Work Bench (PWB). When
new code is being generated, a compiler must be resident for
syntactical and semantic analysis prior to the test and inte-
gration phases This will require FORTRAN 77 and COBOL 74
compilers to be resident on all VAX's.

FAVS(or RXVP80) and CAVS will provide static and dynamic
analysis of the specified HOL source code including usage,
path flow and coverage statistics. Additional capabilities

11

I -A.. .. '-. . ." '"

to enhance documentation, such as the output of cross-
reference tables and summs v data or pretty-printing the
source input, will also be included. Note that EXVP8O is the
commercial version of FAVS. Though they possess the same
basic capabilities as outlined above, there are differences.

Configuration control will be supported through the use of
SCCS. The configuration management of HOL code and support
documentation, including on-line requirements and design in-
formation and test data, will be provided.

Project management will be supported through the use of VUE.
This tool performs resource allocation and analysis, time and
cost analysis, and report processing.

Due to the complexity of the proposed near-term environment,
the evolutionary process required to achieve the far-term
environment, and a need for a focal point for
identification/resolution of problems, support tools must be
provided outside the development environment.

The MPE administrator and toolsmith functions will be
staffed positions primarily serving as the focal point for
management to observe the system activities and as a source
of information for MPE training activities. Tasks will in-
clude performing error rate studies, helping programmers with
MPE usage questions/problems and the identification of needs
not satisfied within the user/management communities.

HYPERGRAPHICS, an off-line training tool, will be used to
support training functions. This will provide low cost
training to personnel outside the production environment.

Communication links will be established between the VAX
11/780's and mainframe computer. The VAX's will also be
linked through a DECnet LAN.

2.2.1 Accuracl and Val idjt_. This section does not apply
to this specification.

2.2.2 Timing. This section does not apply to this
specification.

2.3 Flexibilit . This section does not apply to this
specification.

12

t1

SECTION 3. ENVIRONMENT

3.1 EquRment __Environment. This section provides a descripp-
tion of the new equipment required for the operation of the
near-term MPE.

3.1.1 VAX Environment. The VAX equipment environment will
consist of three VAX-11/780's, as specified in the Final
Report and described in Figure 3.2. Each system will have
interactive terminals (INtext II's and VT1001s, with
Retrographics) located within 1000 feet of the host machine
and multiport memory consisting of 2 megabytes of memory.
Additional recommendations are eleven removable disk packs
and 50 tapes per VAX. The system configuration (SV-AXDBC-CA
with additions) is presented in Figure 3.1 and will require
70 square feet of space for system cabinets and the console
terminal.

..

,~~~~ ,- ":- ,

Figure 3.1 VAX-11/780 System Configuration

13

el i I

Processor Type Microprogramed. 99-bit control
store word

Microcontrol store instruction time
200 nanoseconds
Control store size - 5K words
(99-bit words), 4W words RON,
and 1K words UDCS

Internal data path 32 bits

Size 8K bytes, bipolar with parity

Effective main memory 1800 nanoseconds/64 bits

cycle time

Typical hit ratio 95%

Typical cache cycle 290 nanoseconds
time

Size 128 address translations

Typical hit ratio 97%

Real-time clock Crystal controllede .01%
accuracy 1-microsecond resolution

Time-of-year clock Includes recharging battery
backup for over 100 hours

ILLnn a.. iL 16 32-hit registers
248 basic operations
32 priority interrupt levels

Multiple data types Integer, floating point,
packed decimal, character
string, variable bit fields.
and numeric strings
PDP-11 compatibility mode
instructions

addressing modes 9

Figure 3.2 Technical Specifications for VAX-11/780 Processor
(page 1 of 5)

14

2 tLifLI E3 Power fail/automatic restart,
Single serial line ASCII console
interface,
8
-line communications multiplizers
DZ-11A, DZ-11B, DZ-11Z;
R101 floppy disk drive with
LSI-11 microcomputer,
Vritable Diagnostic Control
Store (VDCS),
Serial line unit for

remote diagnostics,
Virtual console commands
from LA120 terminal

Physical address lines 1 billion bytes (30 bits)

Physical expansion 8 megabytes in 256K-byte increments

Parity 8-bit error correcting code
(ECC) per 64-bit quadvord

Technology 16K-bit dynamic RAs
(200 nanosecond access time)

Cycle times 800 nanoseconds per 64-bit read
(1300 nanoseconds with single-bit
errors)
1400 nanoseconds per 64-bit
write

Power failure Optional battery backup
protection

Maximum UNIBUS I/O 1.5 Mb/sec through buffered
rate data paths

Buffered data paths 15 total, 8-byte buffer
in each

Maximum number of 18 without a repeater
bus loads

Interrupts Directly vectored via UNIBUS
adapter

Figure 3.2 Technical Specifications for VAX-11/780 Processor
(page 2 of 5)

15

I *~~- ,c

minimum backup time 10 minutes

AC line voltage 120/208V

Frequency tolerance 59-61 H2

Phases 3 phase
phase A: 11.2A max. continuous
phase B: 9.9 A max. continuous
phase C: 13.1 A max. continuous
neutral: 14.4 A max. continuous

AC cable length 3 m (9.84 ft.) from back
of cabinet

Maximum ac power 6225 watts
consumption

Fully configured 1800 watts 6140 STU/hr.
multiport memory 1550 kcal/hr.

Operating:

Temperature 150 to 320 C
(590 to 900r)

Relative humidity 20% to 80%

Nonoperating:
Temperature -40O to 660C

(-400 to 1510F)

Relative humidity 0 to 95%

Enhances performance of all floating point instructions
(single and double precision) including polynomial
evaluation, integer/floating conversions, 8-, 16-,
and 32-bit integer multiply.

Figure 3.2 Technical Specifications for VAX-11/780 Processor
(page 3 of 5)

16

• I I I I* I , . % - - -- i ' . .. " ' , ,., , ,'

Peripher als

TEU77 tape transport device:

Program selectable, 800/1600 bpi, 9-track, 125 in/sec
automatic loading magnetic tape transport.

INtext II terminal:

INtext II is the INTERACTIVE, Inc. text editing terminal
based on the Perkin-Elmer 1251 terminal. The terminal
features a video display of 24 lines with 80 characters each.
ASCII text and graphic symbols may be displayed, and a line-
drawing option is provided. The screen is 12 inches along
the diagonal and is hooded to improve readability. INtext II
has a tiltable screen and a detachable keyboard. The ter-
minal can communicate with a computer at speeds ranging from
75 to 9600 baud. INtext II is configured with special mi-
crocode to optimize operation with the text editor INed.
Many of the functions normally performed by the host CPU are
done locally in the INtext II microcode; allowing the host
CPU to support more editing stations. INtext II may also be
used as a standard ASCII terminal. Terminal parameters can
be set for ANSI, VT100, VT52, or dumb modes. INtext II has
labeled function keys corresponding to specific functions
found in INTERACTIVE's screen editor, INed.

VT100 terminal (with Retrographics VT640):

The VT100 is a hiqh performance video display terminal which
provides maximum flexibility. SET-UP features including
scr3ll mode, auto repeat, background, cursor style, margin
bell, key click, and 80 or 132 columns allow the terminal to
be configured to operator preference and provide com-
patibility with the host computer.

The Retrographics VT640 enhancement, a product of Digital
Engineering, requires no software modifications and delivers
full graphizs capabilities without diminishing the features
of the DEC VT100.

REM05 disk drive:

The REM05 is a single access 256MB removable disk pack drive
with one disk pack supplied. The transfer rate is 1.2MB/sec
peak with an average access time of 38.3 msec.

Figure 3.2 Technical Specifications for VAX-11/780 Processor
(page 4 of 5)

17

DUP11 communications device:

The DUP11 is a single-line, program controlled, double-
buffered communications device. The self-contained unit is
capable of handling a wide variety of protocols, byte and bit
oriented. The DUP11 can also be used in conjunction with
customized code for unique applications.

HUX 200/VAX multiterminal emulator:

MUX200/VAX is a software package that allows data files to be
transferred by emulating CDC's 200UT Mode 4A communications
protocol. User's may choose ASCII or BCD character codes for
transmission. Using interactive terminals, users can com-
municate with the host system at command level or can send or
receive batch processing jobs. The VAX-11 terminals appear
as 200UT terminals to the host computer. Users communicate
with the host computer over a single synchronous com-
munications line capable of operating at speeds up to 9600
bits per second. The host computer views the MUX200/VAX line
as 16 multidropped 200UT terminals. Features include detec-
tion of user-defined strings that permit the VAX--11 to spool
output data received from the host system to a line printer;
transmission of up to 8 data files to the host with a single
command; and the capability to support local data processing
on the VAX while operating independently of the comunications
link.

DECnet-VAX

DECnet-VAX allows a suitably configured VAX/VMS system to
participate as a Phase III DECnet node in computer networks.
DECnet-VAX offers task-to-task communications, network file
transfer, adaptive path routing, network management, and
network resource access capabilities (including Network
Command Terminals) using the DIGITAL Network Architecture
(DNA) protocols. DECnet-VAX communicates with adjacent and
non-adjacent Phase III nodes over synchronous communication
lines.

Figure 3.2 Technical Specifications for VAX-11/780 Processor
(page 5 of 5)

18

XL _i22 __ 2 ftware Environment. This section provides a
description of the support software with which the user of
the near-term MPE must interact. This includes descriptions
of the various categories of software development existing at
DMA and how each would interact with the recommended MPE.

~ll software development is monitored through the use of the
project management tool, VUE. Examples of the inputs and
outputs of VUE are illustrated in Figure 3.3. Upon receiving
a job request, VUE is initiated for the job, and at various
points in the scenarios, VUE is updated to reflect pertinent
decisions and actions.

19

- --- ~- .0

17 o

14,

.4r

.40 01 -

-Cg W. 811.

3221

vi IllA-

The usage of tools in the MPE is best discussed in terms of
scenarios. For purposes of discussion, scenarios will be
considered for the following categories of software
development:

1. maintenance of existing software which has not been
upgraded through the Software Improvement Program
(SIP), (Part of this program consists of an effort to
improve existing UNIVAC software.)

2. maintenance of existing software which has been SIP
upgraded,

3. software under development, for which standards were
not specified

4. new software to be develuped by DMA, for which
standards are to be specified, and

5. new software to be developed by contractor, for which
standards are to be specified.

The techniques discussed are intended to demonstrate the ap-
plicability of the recommended tools to the various
scenarios. Specific usage methodologies will be developed
during the MPE system implementation as outlined in Section
19.1 of the Final Report.

Application of the MPE tools to the DMA software scenarios is
illustrated in Figures 3.4 and 3.5.

22

CSTART

SCENARIO

DETERMINATION

TOOLS

APPROACH

SOFTWARE

TESTING

STOP

Figure 3.4 MPE Usage Scenarios Overview

23

l .4

START Scenario
Ntmber Description

1 zieting software not SIP upgraded
2 biating software upgraded by SIP

Software 3 Software presently under development
Job

Request A Nev In-house software

5 New contracted softvare

Software
Maintenance ye

Task Scenario #3

to

Scenario, 14 & 9Se

yyes

Scenario 92 Put docunentet ion

Unin- Mne

Retrieve on-Inhe doctmentation
end configuration controlled

Figure 3.5 4PE Usage Scenarios
(page 1 of 2)

24

Reriv onln documents. ...

an cofgrto conrole

Awtsimnsama tooltla V.I.

Lvdat. ~~ wegcuss .4atlo.t Paaretar

an7tProjdat 6"Ism

.st M.

Upon receiving a job request, the project management tool,
VUE, is initiated for the job and at various points in the
scenarios, the project management system is updated to re-
flect pertinent decisions and actions.

Within the defined scenarios, one of two basic tool ap-

proaches will be followed.

The first, referred to as the "automatic programming
approach", will make repeated use of the subsets of the tool
USE.IT until performance criteria are achieved. The usage of
the various subsets is as follows:

- the USE.IT graphics editor is used to enter program
structures, called control maps, to functionally
decompose requirements and design specifications as
well as changes, if any, which are required as a result
of performance testing,

- the Analyzer verfies internal consistency and
interfaces,

- the Resource Allocation Tool (RAT) automatically
produces programs from Analyzer output,

- source produced by the RAT is compiled and linked, and

- the system is performance tested to determine
acceptability.

Failure to pass performance testing results in repetition
of these steps until criteria are satisfied.

There appears to be no restriction on the size of system
which may be developed with USE.IT. As systems are developed
via USE.IT, generic operations are developed and placed in a
library for use as building blocks on subsequent systems.
For this reason, detailed documentation within AXES
statements is considered mandatory.

The second, referred to as the "conventional tools approach",
will make use of the USE.IT, SDDL, DMATRAN/IFTRAN or FORTRAN
or COBOL, and FAVS/RXVP80 or CAVS tools through the life
cycle. Utilization of tools in the "conventional tools
approach" consists of repeated application of the following
procedures until performance criteria are achieved.

- The USE.IT graphics editor is used to functionally
decompose requirements specifications.

26

- _ f. . - - 9, . .-: ' ' . . . - i - - - v

- SDDL is used to originate the design or make design
changes, if any, which were mandated as a result of
performance testing.

- Source code (DMATRAN/IFTRAN, FORTRAN or COBOL) is
modified to reflect changes brought about by design

changes, performance changes, or FAVS/RXVP80 or CAVS
evaluation.

- FAVS/RXVP80 or CAVS are envoked to detect syntax
errors, perform static analysis, and perform
execution analysis.

- Performance testing is evaluated to establish the
acceptability of the system. Failure to pass
performance testing results in repeating the process.

One of these tool application approaches is followed until
the preliminary test objectives are met. At this time,
the source is transmitted via data link to the target host
for final testing.

while testing on the target host, the project management sys-
tem is apprised of the test status. Upon successful com-
pletion of final test objectives, job completion data is
processed by the project management system. This action
prevents the system status from being obscured from control
and insures a match between production software and the as-
sociated documentation. Target host test objectives will
verify proper usage of machine dependent devices, software
and techniques. Once final testing is completed and the sys-
tem is ready for production status, on-line documentation
such as requirements and design documents, source code and
test data should be updated and placed under configuration
control using SCCS of the IS/1 PWB.

3.2.1 VAX Software Tools. This section provides descrip-
tions of the VAX hosted software tools in the Near-Term MPE.

3.2.1.1 DMATRANIIFTRAIZFORTRAN 77LZOBOL 4_. Coding will be
accomplished in DMATRAN(IFTRAN), FORTRAN 77 or COBOL 74.
DMATRAN(or its commercial version IFTRAN) is an extension to
FORTRAN that allows the use of the SEQUENCE, DOWHILE,
DOUNTIL, IFTHENELSE, and CASE control constructs. The
DMATRAN(IFTRAN) precompiler translates the DMATRAN(IFTRAN)
statements into standard FORTRAN while passing all other
statements unchanged to a file which can then be compiled by
a FORTRAN compilar. In addition to the translation, the
precompiler checks the control structure for proper use of

27

A- WA

DMATRAN(IFTRAN) control structures and issues error messages
if violations occur.

The precompiler provides the following additional features to
improve code production:

1. Indented listing of the DMATRAN(IFTRAN) source code.

2. Editing functions which include in-line comments,
double-spacing around comments, indentation control,
selective page ejection, and selective suppression
of the source listings.

FORTRAN 77 refers to the American National Standard
Programming Language FORTRAN, ANSI X3.9-1978 approved by the
American National Standards Insititute (ANSI) on April 3,
1978. This is the FORTRAN version currently in use (with
extensions) at both DMAAC and DMAHTC on their UNIVAC equip-
ment and supported on VAX-11/780 equipment. COBOL 74 refers
to the American National Standard Programming Language COBOL,
ANSI X3.23-1974 approved by ANSI.

3.2.1.2 USE.IT. Problem definition always occurs prior to
requirement specification, however, analysis of solvability
rarely occurs. One reason behind this fact is the labor in-
tensive characteristic of feasibility studies. A software
tool, USE.IT, automates this process. The rTSE.IT software
system is an integrated set of tools for automating the sof-
tware lifecycle development process. Implementation of a
system is performed through the use of a user-selected syntax
language modeled with the Higher Order Software AXES language
interface. The user specifies the system components and
dataflow in a selected syntax; the AXES subsystem performs an
analysis of the specification; and the Resource Allocation
Tool (RAT) generates a FORTRAN 66 program representing the
system. Future expansion of the USE.IT system is planned to
include the capability to automatically generate code for
FORTRAN 77, COBOL, and Ada, from a single specification.
Figure 3.6 illustrates the typical software lifecycle and the
software lifecycle as it would be if USE.IT were employed.

28

t - . .. , -- ,, m ,f

LTI

*1a

u.

ba dH

3C

w d

'-4

PC

-3f-4

z9 u.4
C..A

5F

29

3.2.1.3 SDDL. The Software Design and Documentation
Language(SDDL) is a software support tool used to partially
automate the generation and checking of a software design
document, (SDD). An SDD is needed because a computer pro-
gramming language is a satisfactory communications medium for
only a few links in the software development process;
programmer-to-programmer and programmer-to-machine. Other
links in the process include designer-to-programmer,
designer-to-designer, designer-to-manager, manager-to-
customer and customer-to-designer. This is a complex network
of information flow which usually requires multiple mediums
of communication. SDDL was developed by the Jet Propulsion
Laboratory to provide a single communication medium that
would be usable over all links except programmer-to-machine
(see Figure 3.7).

ABSTRACT

SCMCSTAGE

DESINERDESINERCUSTMER STRUCTURAL

STAGE

POGRAMMER PROGRAMMHER MAINTEANCE IMPLEMENTATION

Rn PROGR.AMMER STAGE

HOL COMMUNICATION

NACHINEEXECUTIlOND .STAGE

Figure 3.7 Hierarchical Data Development and Communication

30

* ~uI I V

The objective of SDDL is to provide an effective com-
munications medium to support the design and documentation of
complex software applications. This objective is met by
providing (1) a processor which can convert design
specifications into an intelligible, informative machine-
reproducible document, (2) a design and documentation lan-
guage with forms and syntax that are simple, unrestrictive,
and communicative, and (3) a methodology for effective use of
the language and processor. The processor has the capability
to format documents, summarize design information in the form
of reports and handle various user-controlled directives.

SDDL is accessed interactively, but is a batch oriented
process. It is used to periodically generate a SDD which
will reflect the current status of the design process.
Information may be generated on vatiable usage, program
modules, changes to programs, management information and many
other states of the design as desired by the project team
members. A programming language's structure and keywords may
even be modeled to an extent that very little effort would be
required to change the final SDD into source code.

The source language for SDDL was originally Simscript 11.5,
which was only available on large computers. Release version
four has been rehosted to a Harris computer using PASCAL as
the source and is rehostable to any computer system support-
ing Jensen and Wirth standard PASCAL which is supported by
the VAX.

Utilization of SDDL is accomplished through a language syntax
that is simple and flexible. The SDDL processor reads a text
file phrased in the language, then reformats the file by
providing indentation, control flow lines, and user specified
cross reference tables. The printed SDD contains the
reformatted input, a table of contents, and module hierarchy
reports. The indentation can be modeled by using the struc-
tural keywords of a specific language. The exploitation of
these and other features of SDDL provides a vehicle for esta-
blishing standards and conventions in the design process.
Figure 3.8 provides a graphic illustration of the SDDL sof-
tware design process.

31

0

3.2.1.4 ISl1 The IS/I Workbench for the VAX is a facility
that provides a convenient working environment and a uniform
set of tools for computer program development, document
preparation and text processing. It is a general-purpose,
multi-user, interactive system based on Bell Laboratories'
PWB/UNIX system specifically engineered to make the
designer's, programmer's and documenter's environment simple,
efficient, flexible and productive. The system runs on
Digital Equipment Corporation's VAX-11/780 computer system as
a subsystem of the VAX/VMS operating system. It contains
features such as:

o A hierarchical file system
o A flexible, easy-to-use command language that

can be tailored to meet specific user needs
o The ability to execute sequential, asynchronous

and background processes
o A line-oiiented context editor
o A flexible document preparation and text

processing system
o A high-level programming language conducive to

structured programming (C).
o A variety of system programming tools
o The integration of the VAX/VMS and UNIX

environments, such that the look and feel of
UNIX is preserved while allowing access to VMS
when desired.

Because the IS/i Workbench for the VAX runs as a subsystem of
the VAX/VMS operating system provided by DEC, full access to
DEC software is available at all times. In particular, the
Workbench tools may be used to develop native mode VAX/VMS
programs. Compiled programs adhere to VAX object linkage and
callinq sequence conventions. The C compiler, though not
recommended in the near-term environment, is provided with
the Workbench system, generates VAX native-mode code and
obeys VAX stack conventions. Moreover, the Workbench Command
Interpreter is capable of invoking native DEC utilities such
as the linker and FORTRAN, as well as Workbench utilities
with the same command language. Most Workbench programs can
be initiated directly by using the VAX/VMS DCL command inter-
preter as well as by using the Workbench command interpreter.
The file system provided by VAX/VMS is fully available to the
Workbench subsystem. This file system consists of direc-
tiries and files arranged in a hierarchical structure. Some
of its features include:

o Simple and consistent naming conventions.
Names can be absolute or relative to any direc-
tory in the file system hierarchy.

33

U"A 4

o Automatic file space allocation and deal-
location that is transparent to users.

o A flexible set of directory and file protection
modes. All combinations of read, write and
execute access are allowed independently for
the owner of each file or directory, for a
group of users (e.g., all members of a project)
and for all other users. Protection modes can
be set dynamically.

o Facilities for creating, accessing, moving and
processing files, directories or sets of these
in a simple, uniform and natural way.

o Files generated by the IS/1 Workbench for the
VAX are fully compatible with files generated
by VMS programs.

The command language of the IS/1 Workbench for the VAX
utilizes an extended version of the UNIX Shell (command lan-
guage interpreter). It contains extensions designed for use
within Shell procedures (command files) that improve its
usefulness to large programming groups, and make it more con-
venient for use as a high-level programming language. By
utilizing the Shall as a programming language, Workbench
users can eliminate a great deal of the programming tedium
that often accompanies a large project. Many manual
procedures can be quickly and conveniently automated.
Because it is easy to create and use Shell procedures, each
project that uses the IS/1 Workbench for the VAX can
customize the general Workbench environment into one tailored
to its own requirements, organizational structure and
terminology.

Features of the Shell include:

o Ability to use any program as a command and to
supply it with arbitrary character string
arguments. File name arguments can be obtained
from a pattern matching operation on the names
of files in specified directories.

o Ability to execute from the Shell a program
that may be either an image to be executed, a
Shell command procedure or a DCL command
procedure.

34

m rii-i@i!

o Redirection of standard input and output per-
mitting any program to run with file, terminal
or other device input/output.

o Sequential execution of commands

o Parallel execution of commands with the output
of one command connected to the input of
another. This command chaining, called
"pipelining", permits the construction of com-
plex operations from sequences of IS/1
programs.

o Ability to run commands in "background" mode.

o Conditional execution: if, then, else and while
constructions.

o String variables, and string and integer
operations on those variables.

In the IS/I Workbench for the VAX, a word/text processing
system is provided that includes an editing system, a text
formatting system, and spelling and typographical error
detection facilities. The document preparation and text
processing facilities of the IS/I Workbench for the VAX in-
clude commands that automatically control pagination, style
of paragraphs, line justification, hyphenation, multi-column
pages, footnote placement, generation of marginal revision
bars, and generation of tables of contents. Documents
produced can include letters, memoranda, legal briefs, or
specialized documents such as program run books. There are
also facilities for formatting complex tables and equations.

IS/i is a tremendously powerful software manipulation en-
vironment easily and rapidly combining primitive operations
and commands. Rapid software prototyping and quick trial and
error software experimentation evolve as a natural outcome of
this ability to combine the various programs and commands
using pipelines and filters.

Figure 3.9 provides an overview of IS/i commands and ap-
plication programs.

35

= , . .. -T • ,, . . ." t - J _L

abort abort the typing of a file

admin administer SCCS files
ar archive and library maintainer
banner print in block letters
bdiff big diff
bfs big file scanner
btt convert a binary file to text
cal print calendar
cat concatenate and print
cb C beautifier
cc C compiler
cd change working directory
chghist change the history entry of an SCCS delta
chmod change mode
chown change a files owner
cmp compare two files
code print characters with their octal equivalents
col filter reverse line feeds
comb combine SCCS deltas
comm print lines common to two files
copy copy files and/or directories
cp copy
cref make cross reference listing
crypt encode/decode
date print and set the date
dcl execute a DCL command from the Shell
del delete files
delta make an SCCS delta
deroff remove nroff, troff, and eqn constructs
df disk free
di list contents of directory (verbose)
dict check spelling of words in a file
diff differential file comparator
diffuark mark changes between versions of a file
du summarize disk usage
ee INed, the INTERACTIVE CRT text editor
ec encrypt/decrypt files
echo echo arguments
ed text editor
edrestore recover an ed session
egn typeset mathematics
equals Shell assignment command
exit terminate Shell command file
fd2 redirect file descriptor 2 (diagnostic output)

Figure 3.9 IS/1 Commands and Programs
(page 1 of 3)

36

COMMAND DESCRIPTION

ffill fill arbitrarily indented paragraphs of text
find find files
fjust fill & justify arbitrarily indented paragraphs of text
foreign.com install a foreign command
gath gather real and virtual files
get get generation from SCCS file
goto command transfer within a Shell procedure
grep search a file for a pattern
help ask for help
if conditional command
INed INTERACTIVE CRT text editor
kill terminate a process
killall kill all nonancestral processes
1 list with pagination
lex generate programs for simple lexical tasks
ls list contents of directory
z4 macro processor
make make a program
man print on-line documentation
mc multicolumnar filter
mkdir make a directory
msg read messages in
my move or rename a file
negn typeset mathematics on terminal
newbin rehash dirs in execution search sequence variable
news print news items
next new standard input
np print the next page of file
nroff text formatter
od octal dump
onintr handle interrupts in Shell files
pack compress files
pcat expand and concatenate compressed files
pr print files
proofit make a proof copy of documents
prt print SCCS file
Ds process status
ptx permuted index
Dump Shell data transfer command
pushes print readable version of
pwd working directory name
qtype quickly type a copy of document
ratfor rational FORTRAN dialect
recover retrieve lost

Figure 3.9 IS/1 Commands and Programs
(page 2 of 3)

37

ILL,

COMMAND DESCRIPTION

reform reformat text file
regcmp regular expression compile
rjestat RJE status and inquiries
ra remove (unlink) files
radel remove a delta from an SCCS file
rmdir re.,'ove directory
rpl replace all occurrences of a string in a file
sccsdiff compare two versions of an SCCS file
sed stream editor
send submit RJE job
set set a Shell variable
sh Shell (command interpreter)
shift adjust arguments in Shell command file
sleep suspend execution for a interval
sno SNOBOL interpreter
sort sort or merge files
space space and/or indent filter
split split a file into pieces
stty set terminal options
sum print checksum of a file
switch multi-way branch in Shell command file
tab change blanks into tabs
tail deliver the last part of a file
tbl format tables for nroff or troff
tee pipe fitting
time time a command
to send a message in
tr transliterate
troff format text for phototypesetting
ttab convert a text file to binary
type format and type a document
typo find possible typographical errors
ufilter filter underlines for terminal or line printer
unig report repeated lines in a file
unpack expand compressed files
untab change tabs into spaces
wait await completion of process
wc word count
what identify files
whatsnew compare file modification dates
while iteration ir a Shell command file
who identifies uvers currently on system
write write to another user
yacc yet anotier compiler-compiler

Figure 3.9 IS/i Commands and Programs
(page 3 of 3)

38

• - ._AL.

3.2.1.4.1 INed. INed is IS/1's interactive full screen
editor for use with Interactive's INtext II terminals. INed
provides a viewing window on the CRT screen in which all
corrections, insertions, deletions, and other text editing
functions are performed. Up to 10 viewing windows can be
created on the screen. The files in the windows may be the
same file (for viewing different parts of file while editing)
or they may be different files. Editing functions can span
windows and files, simplifying sectioning and concatenation
of text between files. The INed screen editor is the user's
most powerful tool for both document preparation and changes.
While INed is capable of working with any type of ASCII RS232
terminal, use of the INtext II terminal pays great dividends
in terms of user function and greatly reduces CPU overheei.

Arbitrarily defined rectangular regions of text may be moved,
deleted, or duplicated. The user may scroll through a file,
a page or any number of lines at a time, up or down.
Scrolling left or right is also permitted. INed can handle a
document as long as 720 pages of text, double spaced. Longer
documents can be handled by creating multiple files.

All of INed's text editing features are available through the
use of function keys (labeled on the INtext terminal). This
feature speeds up the editing process by eliminating the need
to enter verbose line-oriented commands. The use ot function
keys also reduces the length of time necessary for training.
Most functions are invoked by pressing a single function key.

INed provides several levels of backup that prevent the inad-
vertent destruction of text files. For example, in the event
of a hardware malfunction, the entire editing session can be
reproduced, often without loss of a single keystroke. All
lines deleted during an editing session are saved for poten-
tial recall until the end of that session. In addition, an
original copy of every file edited is automatically saved un-
der a backup file name.

Many system utilities can be executed directly from INed.
They can be invoked to process a line, a paragraph, or entire
file. The results replace the processed text in the file and
on the CRT so that the user can immediately view the cal-
culation or transformation. In this manner, paragraphs can
be filled or justified, columns of numbers totalled, or user
written programs accessed to perform specialized functions on
the text being displayed.

3.2.1.4.2 INword. A need exists to ease the burden of sof-
tware document generation that is necessary to support the
various software projects within DMA. This capability is

39

realized by using the word processing system (INword) which
works closely with the INed screen editor to allow rapid
formatting of documents with a minimum of CPU time. INword
alsa works quite well for producing memos, letters, or
papers. To illustrate the use of INword, a typical document
editing session follows:

1. The text of the document is entered using INed.

2. The text formatting commands are placed with
the text to provide page control, centering,
and justification.

3. The "proofit" command produces a "proof" file
that can be windowed with INed to show the ap-
pearance of the document on the printed page.

4. Using an alternate display window on the
original document, corrections are made and
step 3 is repeated.

5. The document is printed in final form on a
hardcopy printer.

The INed editor itself has a number of built-in page
formatting functions and simple memos can be formatted
using only INed. Figures 3.10 and 3.11 highlight the
features and added utilities of the word processor,
INword.

40

o justification of either or both margins

o automatic hyphenation using a sophisticated logic program

o suppression of automatic hyphenation

o footnotes which can carry over to the next page if exces-
sively long

o automatic page numbering at top or bottom of page

o indents, permanent and temporary

o underlining

o conditional insertion and deletion of text

o automatically numbered and positioned footnotes

o automatically numbered headings

o even-odd page differentiation capabilities

o centering

o specification of multiline headers

o specification of multiline footers

o keeping a block of text or a table on a single page

o specification of page length (if default length not
desired)

o specification of left and right margins (if default mar-
gins not desired)

o forcing the beginning of a new page

o extension of a particular page by a few lines

o automatic widow and orphan control

o single or double spacing

o specification of top and/or bottom margins including mul-
tiline headers and footers (if default header or footer
not desired)

Figure 3.10 INword Features

41

[.0[

dict: identifies possible typographical and spelling
errors by comparing all the words in the copy
with those stored in a 50,000 word dictionary.
Up to 80,000 additional words may be added to
the dictionary.

diff: lists the differences between two files. This
will explicitly point out all of the changes
made.

comm: finds the lines in common between two files.
This will aid in pointing out repetitive
information.

grep: searches through a file or files for a par-
ticular string or pattern. This will help
locate those sections that need revision.

proofit: creates a complete formatted version of the
file exactly as it will look when it is run on
a printer. The original file can be accessed
whila viewing the proof file as either an al-
ternate file or a second window on the screen.

Figure 3.11 INword Utilities

42

----- SCCS. The Source Code Control System (SCCS) is
an integrated set of commands designed to help software
development projects control changes to source code and to
files of text (e.g., manuals). It is equally useful for
tracking and controlling changes to other documents that are
subject to frequent revision. It provides facilities for
storing, updating and retrieving, by version number or date,
all versions of source code modules or of documents, and for
recording who sade each change, when it was made and why.
SCCS is designed to solve many of the source code and
documentation control problems that software development
projects encounter when customer support, system testing and
development are all proceeding simultaneously.

Some of the main characteristics of SCCS are:

" The exact source code or text, as it existed at
any stage of development or maintenance, can be
recreated at any later time.

o All releases and versions of a source code
module or document are stored together, so that
common code or text is stored only once.

o Releases in production or system-test status
can be protected from unauthorized changes.

o Enough identifying information can be
automatically inserted into source code modules
to enable a user to identify the exact version
and release of any such module given only the
corresponding load module or its memory dump.

43

JL L' ij 1L, jV

The Fortran Automated Verification
System (FAVS) is a tool for analyzing source programs written
in FORTRAN or DMATRAN(IFTRAN). FAVS is currently in use at
DMA centers on UNIVAC equipment. RXVP80 is the commercial
version of FAVS and is available on the VAX. Though there
are differences between the two tools, the basic
capabilities, as outlined below, are provided by both tools.
These tools aid in improving the quality and reliability of
software by providing:

o Indented listings of source programs.

o Static analysis to detect inconsistencies in program
structure, in the use of variables, and in calling
parameters.

o Automated documentation.

o Instrumentation of source code.

o Analysis of testing coverage.

o Retesting guidance.

With the use of FAVS or RXVP80, assistance is provided to the
user from the very early stages of implementation, through
system integration, testing, documentation, and maintenance.
Figure 3.12 illustrates the steps in validating a program
with FAYS or RXVP80.

PRECOMPILl 1,-s4.m--- or RMISO

I I• _ €RErf _. 'OR[CT CORRECT
SV ERRM ;RM - -- S IW C a Mto - : lCUl Im l

MY ATSI STATIC EXEU[IC TIONS

NAL.SIS Vai ALYSIS a TPSTI t F

tt LST,6 VI ABtlLE sET/uSE [.16 100
|RI[ACNAIL[CODE [iRRl

INPU/OUTPUT

Figure 3.12 Steps in Validating a Program with FAVS
or RXVP80

4L4

-A,-

Figure 3.13 shows how FAVS or RXVP80 fits into the software
development cycle to augment software analysis and testing.
The additional features are indicated by diagonal lines. The
user's source code can be analyzed and the results will be
presented in reports which help the user decide if acceptance
criteria are being met. The tools can also instrument source
code prior to test execution and provide a test coverage
analysis of the behavior of the program during execution.

Figure 3.13 Software Analysis and Testing Augmented by FAVS
or RXVP80

I

jRRPOT

3.2.1.6 CAVSL The COBOL Automated Verification System
(CAVS) is a tool for analyz.ing source programs written in
COBOL. CAVS is an aid in improving the quality and
reliability of software by providing as a minimum the fol-
lowing set of capabilities.

o Program analysis and error detection

o Documentation production

o Incremental updating of the Project Library

o Instrumentation

o Execution analysis

o Coverage assistance

o Selective application of these functions

CAVS is intended to improve the reliability of COBOL programs
by working as an aid during the coding, testing, implemen-
tation and maintenance phases of a project. Figure 3.14 il-
lustrates the role of CAVS in developing systems.

46

NEWO SYSTEMS PURCHASED
CBLUNDERGOING COBOL

PROGRAMS MAINTENANCE PACKAGES

CAVS ANALYZE CORRECTED
COMAND - COBOL COBOLCOMNSOURCE PROGRAMS

CAVS DOCUMENTATION
PROJECT PROKRA ATIO
LIBRARYPRGA

ANALYSIS

(CAVSINSTRUMENT
I)MMNS,> COBOL

SOURCE
REFORMATTED
SOURCE

USER TEST
TEST INSTRUMENTED
0ATA_ PROGRAMS TESTED

I SOURCE

AINSTALL
TESTE

PROGRAMS

ON DISK DTI
SUM ARY TAKE ACTION

TAKE ACTION TS

Figure 3.14 CAVS Use in Developing Systems

47

NE-- LA-

3 .2 . _VUE, The VUE tool is an integrated, menu-driven

system for project planning and control. It is based on
networking techniques. VUE performs time analysis, cost
analysis, resource analysis, resource allocation, report
processing, including network plots, and maintenance/updating
of VUE mass storage files. Outputs include the following
reports:

o CALENDAR SPECIFICATIONS - Shows the project start date,
which days are in the standard work week, and lists holidays
and special work days (up to 500 of each). Calendar span is
five years.

o NODE SCHEDULE - When VUE analyses an I-J (activity on
arrow) network, this report shows early and late occurrence
times for the nodes between activities.

o PREDECESSOR REPORT - Reports all the predecessors of the
selected activities and the lag times specified (for
precedence networks).

o START AND FINISH NOL-I3 REPORT - VUE allows multiple start
and finish nodes, and these are listed in this report. Also
listed are any nodes which may be unconnected to the network.

o RESOURCE REPORT - Resource levels for up to ten resources
may be specified for each activity. This report gives a
daily report of resource levels needed to keep the project on
schedule.

o ACTIVITY TIMES REPORT - Compares an activity's scheduled
times with its target start, target finish, and completion
times.

o COST ACCOUNTING REPORT - Each activity can carry up to
four separate costs, and they can be positive or negative for
credit/debit accounting. This report gives monthly subtotals
and a running total for the activities reported.

o CURRENT WORK REPORT - Lists those activities which should
be worked on during the current time window (e.g. this week,
this month).

o PROGRESS REPORT - Reports on time and behind schedule
activities.

o BAR CHART REPORT - Shows schedule for activities in a
graphical form- Critical activities are clearly indicated.
Bar chart scale is variable, and can either be specified by
the user or left to automatic program control.

.•.

0 SCHEDULE REPORT - Shows early start, early finish, late

start, late finish, and three floats for each activity.

XiS)3 General SuRo r t.

3.2.3.1 HYPERGRAPHICS. The HYPERGRAPHICS tool is a mi-
crocomputer based system for the creation and delivery of
lecture material. Applications include formal presentations
and classroom training. An additional capability is the
preparation and use of interactive lesson plans used on an
individual basis for more specialized self-paced training.

Sample features of the system are as follows:

o Screen mode editor
o Box, line and figure composition facilities
o Color graphics embedding facility
o On-line help
o Dynamic delivery functions
o Highlighting function for presentation emphasis
o Permanent inverse video for highlighting

HYPERGRAPHICS is available on an APPLE II Pascal based
microcomputer. Floppy disks are used for the storage of lec-
ture material, (approximately 145 pages per diskette). In
classroom lectures a large screen TV may be used for display
though a smaller screen TV would be more practical for the
preparation of a lacture. The lecture material consists of
page frames displayed in predetermined or
instructor/presenter directed order. Each page in turn con-
sists of 20 lines of 40 characters each. Upper and lower
case character are available along with most common special
characters.

HYPERGRAPHICS operates in two modes. First the editing func-
tions are used in the creation and/or modification of lecture
material. The second set of functions are used in the
presentation of the material. Figure 3.15 lists the twelve
commands comprising the command facility.

49

i-..-- S.- - -I I -

COMMAND ACTION

N Transfer to the next page
Z Transfer to page zero
P Transfer to the previous page
J Transfer to user selected page

0-9 Transfer to numbered reference
ESC 1-5 Execute Pascal program reference

3Cycle next page sequence until key press
R Reverse screen color
M Activate line marker
H Highlight marked line

Move marker up one line
/ hove marker down one line
C Change system parameters
L List page on printer
0 List several pages
? Display commands
E Edit current page
Q Exit program

Figure 3.15 HYPERGRAPHICS Command List

50

4 .~.-

The first five commands are used most often during delivery
of a lecture. N causes the display of the page linked as the
next logical (not necessarily physical) page. The zero page
is displayed when the system is initialized and usually
serves as a table of contents for the material in the remain-
der of the file. The Z command is used to return to page
zero from any other page. This command is particularly
useful in review situations where rapid access to different
pages is needed. As different pages are accessed, the pro-
gram keeps track of the traversal order. The P command is
used to review these previously displayed pages. The J com-
mand is used to select a page by number.

Pages can have up to ten references to other pages. These
references are usually shown on the screen as a single digit
surrounded by a single lined box. Pressing one of the
numeric keys corresponding to a reference causes the selected
page to be presented.

Up to five Pascal program references can be made from each
page. These references are usually shown on the screen as a
single digit surrounded by a double lined box. HYPERGRAPHICS
chains to these programs sending information needed to reen-
ter the program and displaying the current page. If the
referenced program chains back to HYPERGRAPHICS, this in-
formation is used to select the proper file and page.

Normally the images are displayed in black on a white
background. Some pages are easier to read with the display
colors reversed. This is accomplished by the R command. A
marker can be used to call attention to a particular line on
the screen. The line being marked can be highlighted by
reversing its colors.

If the system has a printer attached, hardcopy of the page
being displayed can be obtained with the L command. The 0
command is used to list a sequence of pages.

The HYPERGRAPHICS system is very easy to learn. A short ses-
sion is all that is needed to learn how to traverse pages and
use the system. During this training time, the ? command can
be used to display a complete list of the commands and their
functions. A prompt line that lists the possible commands
can be displayed at the bottom of the screen. This and other
system parameters can be changed by the C command. Normally
the prompt line is not displayed because it might be confused
with the page material.

The final command, Q, is used to terminate execution of the
program.

51

The normal traversal functions are used to move within the
network of pages while material is being created or edited.
The edit mode is entered by the E command. The editor has a
full array of screen editing functions. The editor functions
allow the user to insert a blank line moving the rest of the
page down, to delete a line. The editor also allows the user
to alter lines by inserting, deleting or replacing
characters. Characters can be entered in either black on
white or white on black modes. These modes can be mixed in a
line. Full cursor control can be used to move to any
location on the screen while using this edit function.

Other edit functions provide a means of changing the next
page and the other references for the page being edited and
to load a copy of another page from the disk. This feature
is particularly useful when a sequence of pages is being
created with relatively minor changes from one page to the
next.

After a page has been edited, the changes can be written to
disk or disregarded. Thus changes made during a lecture can
be treated as temporary or permanent.

3.3 Interfaces. Communication links must be established
using standard user interface protocols or I/O channels.
Since multiple VAX-11/780's (3) are recommended for each
center, a standard BISYNCH protocol should be used if
possible. The HUX/200 VAX system is recommended for com-
munications between the VAX development systems and the
UNIVAC production mainframe. The DECnet LAN is recommended
for communications amongst the VAX systems within each DMA
center. Descriptions of MUX 200 and DECnet can be found in
Figure 3.2.

.! Securityand Privacy. This section does not apply to
this specification.

3.5-Cntrois- This section does not apply to this
specification.

I<

52

MP -".MJKI

_- . Aj "MON

SECTION 4. DESIGN DETAILS

This section does not apply to this specification.

53

WI .

. IL.

VWK.
~~W,

~M
AY~X

-1o

VOIC At" And exaeL&* A&ue.cd davedopwent, t*ad

and eol~iemAl"g 4iPPz'* 0Ukh "19" 6 tW 4 &At CO"X4L
4 po"-d to W.P ft""oj4 (PO6) I id otW to

ede~t. The p'4n~AIII . teeki t: p'teas a/it

"U nee 04 y4ownd aftd aeAospae obfe..to iUnteU'le..t daft
?.aoUec~t and kanduftg, 1otiowatton sqjstem tedhnoogy,

£onowoheAJ. popagton, &otid 6*afe hcieA"e, ftijmawjve
pAys 's and eteet~onui 4eiAbl.Lty, MAKWi~AbU4 n

L I

